ORGANIC AGRICULTURE

Organic farming is an alternative agricultural system which originated early in the 20th century in reaction to rapidly changing farming practices.The development of organic agriculture continues by various organic agriculture organizations today. It relies on fertilizers of organic origin such as compost, manure, green manure, and bone meal and places emphasis on techniques such as crop rotation and mixed cropping. Biological pest control, mixed cropping and the fostering of insect predators are encouraged. In general, organic standards are designed to allow the use of naturally occurring substances while prohibiting or strictly limiting synthetic substances.For instance, naturally occurring pesticides such as pyrethrin and rotenone are permitted, while synthetic fertilizers and pesticides are generally prohibited. Synthetic substances that are allowed include, for example, copper sulphate, elemental sulphur and Ivermectin. Genetically modified organisms, nanomaterials, human sewage sludge, plant growth regulators, hormones, and antibiotic use in livestock husbandry are prohibited.Reasons for advocation of organic farming include real or perceived advantages in sustainability,openness, self-sufficiency, autonomy/independence, health, food security, and food safety, although the match between perception and reality is continually challenged.

Organic agricultural methods are internationally regulated and legally enforced by many nations, based in large part on the standards set by the International Federation of Organic Agriculture Movements (IFOAM), an international umbrella organization for organic farming organizations established in 1972.In a broader term,organic agriculture can be defined as:an integrated farming system that strives for sustainability, the enhancement of soil fertility and biological diversity whilst, with rare exceptions, prohibiting synthetic pesticides, antibiotics, synthetic fertilizers, genetically modified organisms, and growth hormones.

Since 1990 the market for organic food and other products has grown rapidly, reaching $63 billion worldwide in 2012.This demand has driven a similar increase in organically managed farmland that grew from 2001 to 2011 at a compounding rate of 8.9% per annum.As of 2011, approximately 37,000,000 hectares (91,000,000 acres) worldwide were farmed organically, representing approximately 0.9 percent of total world farmland.

Methods

"Organic agriculture is a production system that sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects. Organic agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved..."—International Federation of Organic Agriculture Movements.
Organic farming methods combine scientific knowledge of ecology and modern technology with traditional farming practices based on naturally occurring biological processes. Organic farming methods are studied in the field of agro-ecology. While conventional agriculture uses synthetic pesticides and water-soluble synthetically purified fertilizers, organic farmers are restricted by regulations to using natural pesticides and fertilizers. An example of a natural pesticide is pyrethrin, which is found naturally in the Chrysanthemum flower. The principal methods of organic farming include crop rotation, green manures and compost, biological pest control, and mechanical cultivation. These measures use the natural environment to enhance agricultural productivity: legumes are planted to fix nitrogen into the soil, natural insect predators are encouraged, crops are rotated to confuse pests and renew soil, and natural materials such as potassium bicarbonate and mulches are used to control disease and weeds. Genetically modified seeds and animals are excluded.

While organic is fundamentally different from conventional because of the use of carbon based fertilizers compared with highly soluble synthetic based fertilizers and biological pest control instead of synthetic pesticides, organic farming and large-scale conventional farming are not entirely mutually exclusive. Many of the methods developed for organic agriculture have been borrowed by more conventional agriculture. For example, Integrated Pest Management is a multifaceted strategy that uses various organic methods of pest control whenever possible, but in conventional farming could include synthetic pesticides only as a last resort.

Crop Diversity
Organic farming encourages crop diversity. The science of agro-ecology has revealed the benefits of polyculture (multiple crops in the same space), which is often employed in organic farming.Planting a
variety of vegetable crops supports a wider range of beneficial insects, soil microorganisms, and other factors that add up to overall farm health. Crop diversity helps environments thrive and protects species from going extinct.

Soil Management
Organic farming relies heavily on the natural breakdown of organic matter, using techniques like green manure and composting, to replace nutrients taken from the soil by previous crops. This biological process, driven by microorganisms such as mycorrhiza, allows the natural production of nutrients in the soil throughout the growing season, and has been referred to as feeding the soil to feed the plant. Organic farming uses a variety of methods to improve soil fertility, including crop rotation, cover cropping, reduced tillage, and application of compost. By reducing tillage, soil is not inverted and exposed to air; less carbon is lost to the atmosphere resulting in more soil organic carbon. This has an added benefit of carbon sequestration, which can reduce green house gases and help reverse climate change.

Plants need nitrogen, phosphorus, and potassium, as well as micronutrients and symbiotic relationships with fungi and other organisms to flourish, but getting enough nitrogen, and particularly synchronization so that plants get enough nitrogen at the right time (when plants need it most), is a challenge for organic farmers. Crop rotation and green manure ("cover crops") help to provide nitrogen through legumes (more precisely, the Fabaceae family), which fix nitrogen from the atmosphere through symbiosis with rhizobial bacteria. Intercropping, which is sometimes used for insect and disease control, can also increase soil nutrients, but the competition between the legume and the crop can be problematic and wider spacing between crop rows is required. Crop residues can be ploughed back into the soil, and different plants leave different amounts of nitrogen, potentially aiding synchronization.Organic farmers also use animal manure, certain processed fertilizers such as seed meal and various mineral powders such as rock phosphate and green sand, a naturally occurring form of potash that provides potassium. Together these methods help to control erosion. In some cases pH may need to be amended. Natural pH amendments include lime and sulphur, but in the U.S. some compounds such as iron sulphate, aluminum sulphate, magnesium sulphate, and soluble boron products are allowed in organic farming.

Mixed farms with both livestock and crops can operate as ley farms, whereby the land gathers fertility through growing nitrogen-fixing forage grasses such as white clover or alfalfa and grows cash crops or cereals when fertility is established. Farms without livestock ("stockless") may find it more difficult to maintain soil fertility, and may rely more on external inputs such as imported manure as well as grain legumes and green manures, although grain legumes may fix limited nitrogen because they are harvested. Horticultural farms that grow fruits and vegetables in protected conditions often relay even more on external inputs.

Biological research into soil and soil organisms has proven beneficial to organic farming. Varieties of bacteria and fungi break down chemicals, plant matter and animal waste into productive soil nutrients. In turn, they produce benefits of healthier yields and more productive soil for future crops. Fields with less or no manure display significantly lower yields, due to decreased soil microbe community. Increased manure improves biological activity, providing a healthier, more arable soil system and higher yields.

Weed Management
Organic weed management promotes weed suppression, rather than weed elimination, by enhancing crop competition and phytotoxic effects on weeds. Organic farmers integrate cultural, biological, mechanical, physical and chemical tactics to manage weeds without synthetic herbicides.
Organic standards require rotation of annual crops, meaning that a single crop cannot be grown in the same location without a different, intervening crop. Organic crop rotations frequently include weed-suppressive cover crops and crops with dissimilar life cycles to discourage weeds associated with a particular crop. Research is ongoing to develop organic methods to promote the growth of natural microorganisms that suppress the growth or germination of common weeds.
Other cultural practices used to enhance crop competitiveness and reduce weed pressure include selection of competitive crop varieties, high-density planting, tight row spacing, and late planting into warm soil to encourage rapid crop germination.
Mechanical and physical weed control practices used on organic farms can be broadly grouped as:
Tillage - Turning the soil between crops to incorporate crop residues and soil amendments; remove existing weed growth and prepare a seedbed for planting; turning soil after seeding to kill weeds, including cultivation of row crops;
Mowing and cutting - Removing top growth of weeds;
Flame weeding and thermal weeding - Using heat to kill weeds; and
Mulching - Blocking weed emergence with organic materials, plastic films, or landscape fabric.
Some critics, citing work published in 1997 by David Pimentel of Cornell University, which described an epidemic of soil erosion worldwide, have raised concerned that tillage contribute to the erosion epidemic. The FAO and other organizations have advocated a 'no-till' approach to both conventional and organic farming, and point out in particular that crop rotation techniques used in organic farming are excellent no-till approaches. A study published in 2005 by Pimentel and colleagues confirmed that 'Crop rotations and cover cropping (green manure) typical of organic agriculture reduce soil erosion, pest problems, and pesticide use.' Some naturally sourced chemicals are allowed for herbicidal use. These include certain formulations of acetic acid (concentrated vinegar), corn gluten meal, and essential oils. A few selective bio-herbicides based on fungal pathogens have also been developed. At this time, however, organic herbicides and bio-herbicides play a minor role in the organic weed control toolbox.

Weeds can be controlled by grazing. For example, geese have been used successfully to weed a range of organic crops including cotton, strawberries, tobacco, and corn,reviving the practice of keeping cotton patch geese, common in the southern U.S. before the 1950s. Similarly, some rice farmers introduce ducks and fish to wet paddy fields to eat both weeds and insects.


Controlling Other Organisms
Organisms aside from weeds that cause problem on organic farms include arthropods (e.g., insects, mites), nematodes, fungi and bacteria. Organic practices include, but are not limited to:encouraging predatory beneficial insects to control pests by serving them nursery plants and/or an alternative habitat, usually in a form of a shelter belt, hedgerow, or beetle bank;encouraging beneficial microorganisms;rotating crops to different locations from year to year to interrupt pest reproduction cycles;planting companion crops and pest-repelling plants that discourage or divert pests;using row covers to protect crops during pest migration periods;using biological pesticides and herbicides;using stale seed beds to germinate and destroy weeds before planting;using sanitation to remove pest habitat;Using insect traps to monitor and control insect populations and using physical barriers, such as row covers.
Examples of predatory beneficial insects include minute pirate bugs, big-eyed bugs, and to a lesser extent ladybugs (which tend to fly away), all of which eat a wide range of pests. Lacewings are also effective, but tend to fly away. Praying mantis tend to move more slowly and eat less heavily. Parasitoid wasps tend to be effective for their selected prey, but like all small insects can be less effective outdoors because the wind controls their movement. Predatory mites are effective for controlling other mites.
Naturally derived insecticides allowed for use on organic farms use include Bacillus thuringiensis (a bacterial toxin), pyrethrum (a chrysanthemum extract), spinosad (a bacterial metabolite), neem (a tree extract) and rotenone (a legume root extract). Fewer than 10% of organic farmers use these pesticides regularly; one survey found that only 5.3% of vegetable growers in California use rotenone while 1.7% use pyrethrum.These pesticides are not always more safe or environmentally friendly than synthetic pesticides and can cause harm.The main criterion for organic pesticides is that they are naturally derived, and some naturally derived substances have been controversial. Controversial natural pesticides include rotenone, copper, nicotine sulphate, and pyrethrums; Rotenone and pyrethrum are particularly controversial because they work by attacking the nervous system, like most conventional insecticides. Rotenone is extremely toxic to fish and can induce symptoms resembling Parkinson's disease in mammals. Although pyrethrum (natural pyrethrins) is more effective against insects when used with piperonyl butoxide (which retards degradation of the pyrethrins), organic standards generally do not permit use of the latter substance.
Naturally derived fungicides allowed for use on organic farms include the bacteria Bacillus subtilis and Bacillus pumilus; and the fungus Trichoderma harzianum. These are mainly effective for diseases affecting roots. Compost tea contains a mix of beneficial microbes, which may attack or out-compete certain plant pathogens, but variability among formulations and preparation methods may contribute to inconsistent results or even dangerous growth of toxic microbes in compost teas.
Some naturally derived pesticides are not allowed for use on organic farms. These include nicotine sulfate, arsenic, and strychnine.
Synthetic pesticides allowed for use on organic farms include insecticidal soaps and horticultural oils for insect management; and Bordeaux mixture, copper hydroxide and sodium bicarbonate for managing fungi. Copper sulphate and Bordeaux mixture (copper sulphate plus lime), approved for organic use in various jurisdictions,can be more environmentally problematic than some synthetic fungicides dissallowed in organic farming.Similar concerns apply to copper hydroxide. However, repeated application of copper sulphate or copper hydroxide as a fungicide may eventually result in copper accumulation to toxic levels in soil, and admonitions to avoid excessive accumulations of copper in soil appear in various organic standards and elsewhere. Environmental concerns for several kinds of biota arise at average rates of use of such substances for some crops.In the European Union, where replacement of copper-based fungicides in organic agriculture is a policy priority,research is seeking alternatives for organic production.

Genetic Modification
A key characteristic of organic farming is the rejection of genetically engineered plants and animals(GMO). On 19 October 1998, participants at IFOAM's 12th Scientific Conference issued the Mar del Plata Declaration, where more than 600 delegates from over 60 countries voted unanimously to exclude the use of genetically modified organisms in food production and agriculture.
Although GMOs are excluded from organic farming, there is concern that the pollen from genetically modified crops is increasingly penetrating organic and heirloom seed stocks, making it difficult, if not impossible, to keep these genomes from entering the organic food supply. Differing regulations among countries limits the availability of GMOs to certain countries, as described in the article on regulation of the release of genetic modified organisms.

Tools
Organic farmers use a number of traditional farm tools to do farming. Due to the goals of sustainability in organic farming, organic farmers try to minimize their reliance on fossil fuels. In the developing world, on small organic farms tools are normally constrained to hand tools and diesel powered water pumps.

Composting
Using manure as a fertiliser risks contaminating food with animal gut bacteria, including pathogenic strains of E.coli that have caused fatal poisoning from eating organic food.To combat this risk, USDA organic standards require that manure must be sterilized through high temperature thermophilic
composting. If raw animal manure is used, 120 days must pass before the crop is harvested if the final product comes into direct contact with the soil. For products that don't directly contact soil, 90 days must pass prior to harvest

Economics
The economics of organic farming, a subfield of agricultural economics, encompasses the entire process and effects of organic farming in terms of human society, including social costs, opportunity costs, unintended consequences, information asymmetries, and economies of scale. Although the scope of economics is broad, agricultural economics tends to focus on maximizing yields and efficiency at the farm level. Economics takes an anthropocentric approach to the value of the natural world: biodiversity, for example, is considered beneficial only to the extent that it is valued by people and increases profits. Some entities such as the European Union subsidize organic farming, in large part because these countries want to account for the externalities of reduced water use, reduced water contamination, reduced soil erosion, reduced carbon emissions, increased biodiversity, and assorted other benefits that result from organic farming.
Traditional organic farming is labour and knowledge-intensive whereas conventional farming is capital-intensive, requiring more energy and manufactured inputs.

Productivity
Studies comparing yields have had mixed results.These differences among findings can often be attributed to variations between study designs including differences in the crops studied and the methodology by which results were gathered.
A 2012 meta-analysis found that productivity is typically lower for organic farming than conventional farming, but that the size of the difference depends on context and in some cases may be very small. While organic yields can be lower than conventional yields, another meta-analysis published in Sustainable Agriculture Research in 2015, concluded that certain organic on-farm practices could help narrow this gap. Timely weed management and the application of manure in conjunction with legume forages/cover crops were shown to have positive results in increasing organic corn and soybean productivity. More experienced organic farmers were also found to have higher yields than other organic farmers who were just starting out.
Another meta-analysis published in the journal Agricultural Systems in 2011 analyzed 362 datasets and found that organic yields were on average 80% of conventional yields. The author's found that there are relative differences in this yield gap based on crop type with crops like soybeans and rice scoring higher than the 80% average and crops like wheat and potato scoring lower. Across global regions, Asia and Central Europe were found to have relatively higher yields and Northern Europe relatively lower than the average.
A 2007 study compiling research from 293 different comparisons into a single study to assess the overall efficiency of the two agricultural systems has concluded that "organic methods could produce enough food on a global per capita basis to sustain the current human population, and potentially an even larger population, without increasing the agricultural land base." The researchers also found that while in developed countries, organic systems on average produce 92% of the yield produced by conventional agriculture, organic systems produce 80% more than conventional farms in developing countries, because the materials needed for organic farming are more accessible than synthetic farming materials to farmers in some poor countries. This study was strongly contested by another study published in 2008, which stated, and was entitled, "Organic agriculture cannot feed the world" and said that the 2007 came up with "a major overestimation of the productivity of OA" "because data are misinterpreted and calculations accordingly are erroneous." However,additional research needs to be conducted in the future to further clarify these claims.

Profitability
The profitability of organic agriculture can be attributed to a number of factors. First, organic farmers do not rely on synthetic fertilizer and pesticide inputs, which can be costly. In addition, organic foods currently enjoy a price premium over conventionally produced foods, meaning that organic farmers can often get more for their yield.
The price premium for organic food is an important factor in the economic viability of organic farming. In 2013 there was a 100% price premium on organic vegetables and a 57% price premium for organic fruits. These percentages are based on wholesale fruit and vegetable prices, available through the United States Department of Agriculture’s Economic Research Service.Price premiums exist not only for organic versus non-organic crops, but may also vary depending on the venue where the product is sold: farmers markets, grocery stores, or wholesale to restaurants. For many producers, direct sales at farmers markets are most profitable because the farmer receives the entire markup, however this is also the most time and labor-intensive approach.
For markets and supermarkets organic food is profitable as well, and is generally sold at significantly higher prices than non-organic food.

Energy Efficiency
In the most recent assessments of the energy efficiency of organic versus conventional agriculture, results have been mixed regarding which form is more carbon efficient. Organic farm systems have more often than not been found to be more energy efficient.A comprehensive comparison of energy efficiency in grain production, produce yield, and animal husbandry concluded that organic farming had a higher yield per unit of energy over the vast majority of the crops and livestock systems.

Labour And Employment
Organic production is more labor-intensive than conventional production.On the one hand, this increased labor cost is one factor that makes organic food more expensive.On the other hand, the increased need for labor may be seen as an "employment dividend" of organic farming, providing more jobs per unit area than conventional systems. The 2011 UNEP Green Economy Report suggests that "an increase in investment in green agriculture is projected to lead to growth in employment of about 60 per cent compared with current levels" and that 'green agriculture investments could create 47 million additional jobs over the next 40 years.' The UNEP also states that by the green agriculture and food distribution, more calories per person per day, more jobs and business opportunities especially in rural areas, and market-access opportunities, especially for developing countries, will be available.

World's Food Security
In 2007 the United Nations Food and Agriculture Organization (FAO) said that organic agriculture often leads to higher prices and hence a better income for farmers, so it should be promoted. However, FAO stressed that by organic farming one could not feed the current mankind, even less the bigger future population. Both data and models showed then that organic farming was far from sufficient. Therefore, chemical fertilizers were needed to avoid hunger. Other analysis by many agribusiness executives, agricultural and ecological scientists, and international agriculture experts revealed the opinion that organic farming would not only increase the world's food supply, but might be the only way to eradicate hunger.
FAO stressed that fertilizers and other chemical inputs can much increase the production, particularly in Africa where fertilizers are currently used 90% less than in Asia. For example, in Malawi the yield has been boosted using seeds and fertilizers. FAO also calls for using biotechnology, as it can help smallholder farmers to improve their income and food security.
Also the New Partnership For African Development (NEPAD),a development organization of African governments, announced that feeding Africans and preventing malnutrition requires fertilizers and enhanced seeds.
According to a more recent study in Science digest, organic best management practices shows an average yield only 13% less than conventional. In the world's poorer nations where most of the world's hungry live, and where conventional agriculture's expensive inputs are not affordable by the majority of farmers, adopting organic management actually increases yields 93% on average, and could be an important part of increased food security.

Environmental Impact Assessment
Researchers at Oxford university analyzed 71 peer-reviewed studies and observed that organic products are sometimes worse for the environment. Organic milk, cereals, and pork generated higher greenhouse gas emissions per product than conventional ones but organic beef and olives had lower emissions in most studies.Usually organic products required less energy, but more land. For a unit of product, organic produce generates higher nitrogen leaching, nitrous oxide emissions, ammonia emissions, eutrophication and acidification potential than when conventionally grown.
Proponents of organic farming have claimed that organic agriculture emphasizes closed nutrient cycles, biodiversity, and effective soil management providing the capacity to mitigate and even reverse the effects of climate change and that organic agriculture can decrease fossil fuel emission.

Capacity Building In Developing Countries
Organic agriculture can contribute to ecologically sustainable, socio-economic development, especially in poorer countries.The application of organic principles enables employment of local resources (e.g., local seed varieties, manure, etc.) and therefore cost-effectiveness. Local and international markets for organic products show tremendous growth prospects and offer creative producers and exporters excellent opportunities to improve their income and living conditions.Organic agriculture is knowledge intensive. Globally, capacity building efforts are underway, including localized training material, to limited effect. As of 2007, the International Federation of Organic Agriculture Movements hosted more than 170 free manuals and 75 training opportunities online.
Similarly,in 2008 the United Nations Environmental Programme (UNEP) and the United Nations Conference on Trade and Development (UNCTAD) stated that "organic agriculture can be more conducive to food security in Africa than most conventional production systems, and that it is more likely to be sustainable in the long-term" and that "yields had more than doubled where organic, or near-organic practices had been used" and that soil fertility and drought resistance improved.

Pesticides
In organic farming, synthetic pesticides are generally prohibited. A chemical is said to be synthetic if it does not already exist in the natural world. But the organic label goes further and usually prohibit compounds that exist in nature if they are produced by chemical synthesis. So the prohibition is also about the method of production and not only the nature of the compound.A non-exhaustive list of organic approved pesticides exists with their median lethal dose.
Copper(II) sulphate is used as a fungicide and is also used in conventional agriculture (LD50 300 mg/kg). Conventional agriculture has the option to use the less toxic Mancozeb (LD50 4,500 to 11,200 mg/kg).Boric acid is used as stomach poison that target insects (LD50: 2660 mg/kg).Pyrethrin comes from chemicals extracted from flowers of the genus Pyrethrum (LD50 of 370 mg/kg). Its potent toxicity is used to control insects.Lime sulphur (aka calcium polysulphide) and sulphur are also allowed.
Rotenone is a powerful insecticide that was used to control insects (LD50: 132 mg/kg). Despite the high toxicity of Rotenone to aquatic life and some links it to Parkinson disease, the compound is still allowed in organic farming as it is a naturally occurring compound.Bromomethane is a gas that is still used in the nurseries of Strawberry organic farming.
Azadirachtin is a wide spectrum very potent insecticide,almost non-toxic to mammals (LD50 in rats is > 3,540 mg/kg) but affects beneficial insects.

Soil Conservation
Supporters claim that organically managed soil has a higher quality and higher water retention.This may help increase yields for organic farms in drought years. Organic farming can build up soil organic matter better than conventional no-till farming, which suggests long-term yield benefits from organic farming. An 18-year study of organic methods on nutrient-depleted soil concluded that conventional methods were superior for soil fertility and yield for nutrient-depleted soils in cold-temperate climates, arguing that much of the benefit from organic farming derives from imported materials that could not be regarded as self-sustaining.

Biodiversity
The conservation of natural resources and biodiversity is a core principle of organic farming production. Three broad management practices :prohibition/reduced use of chemical pesticides and inorganic fertilizers; sympathetic management of non-cropped habitats; and preservation of mixed farming which are largely intrinsic (but not exclusive) to organic farming are particularly beneficial
for farmland wildlife. Using practices that attract or introduce beneficial insects, provide habitat for birds and mammals, and provide conditions that increase soil biotic diversity serve to supply vital ecological services to organic production systems. Advantages to certified organic operations that implement these types of production practices include: 1) decreased dependence on outside fertility inputs; 2) reduced pest management costs; 3) more reliable sources of clean water; and 4) better pollination.
Nearly all non-crop, naturally occurring species observed in comparative farm land practice studies show a preference for organic farming both by abundance and diversity.An average of 30% more species inhabit organic farms. Birds, butterflies, soil microbes, beetles, earthworms,spiders, vegetation, and mammals are particularly affected. Lack of herbicides and pesticides improve biodiversity fitness and population density. Many weed species attract beneficial insects that improve soil qualities and forage on weed pests.Soil-bound organisms often benefit because of increased bacteria populations due to natural fertilizer such as manure, while experiencing reduced intake of herbicides and pesticides.Increased biodiversity, especially from beneficial soil microbes and mycorrhizae have been proposed as an explanation for the high yields experienced by some organic plots.Biodiversity from organic farming provides capital to humans. Species found in organic farms enhance sustainability by reducing human input (e.g., fertilizers, pesticides).
The USDA’s Agricultural Marketing Service (AMS) published a Federal Register notice on 15 January 2016, announcing the National Organic Program (NOP) final guidance on Natural Resources and Biodiversity Conservation for Certified Organic Operations. Given the broad scope of natural resources which includes soil, water, wetland, woodland and wildlife, the guidance provides examples of practices that support the underlying conservation principles and demonstrate compliance with USDA organic regulations.
A wide range of organisms benefit from organic farming, but it is unclear whether organic methods confer greater benefits than conventional integrated agri-environmental programs.Organic farming is often presented as a more biodiversity-friendly practice, but the generality of the beneficial effects of organic farming is debated as the effects appear often species- and context-dependent, and current research has highlighted the need to quantify the relative effects of local- and landscape-scale management on farmland biodiversity.


SNAIL FARMING:AN EMERGING AFRICAN GOLDMINE

Heliciculture, also known as heliculture, commonly known as snail farming, is the process of raising land snails specifically for human use, either to use their flesh as edible escargot, or more recently, to obtain snail slime for use in cosmetics,medicine or snail eggs for human consumption as a type of caviar. Perhaps the best known edible land snail species in the Western world is Helix pomatia (also
known as Roman snail or Burgundy snail). This snail is located throughout much of Europe. Helix aspersa, being next most known, were found originally in the Mediterranean region. Helix aspera are now common in many parts of North America, Central America and Australasia. Roasted snail shells have been found in archaeological excavations, an indication that snails have been eaten since prehistoric times.

  Lumaca romana, (translation: Roman snail), was an ancient method of snail farming or heliciculture in the region about Tarquinia. This snail farming method was described by Fulvius Lippinus (49 BC) and mentioned by Marcus Terentius Varro in De Re rustica III, The snails were fattened for human consumption using spelt and aromatic herbs.

  Economic Impact U.S. imports of snails were worth more than $4.5 million in 1995 and came from 24 countries.This includes preserved or prepared snails and snails that are live, fresh, chilled, or frozen. Major exporters to the U.S. are France, Indonesia, Greece and China. The U.S. exported live, fresh, chilled, or frozen snails worth $55,000 to 13 countries; most were shipped to Japan, the Netherlands, and the United Kingdom. Individual statistics are not available for U.S. exports of prepared or processed snails from the U.S. Department of Commerce.

  List Of Edible Land Snail Species
 Edible land snails range in size from about one millimeter long to the giant African snails, which occasionally grow up to 312 mm (12 1/4 in) in length. "Escargot" most commonly refers to either Helix aspersa or to Helix pomatia, although other varieties of snails are eaten. Achatina fulica, a giant African snail, is sliced and canned and passed off on some consumers as escargot. Terms such as "garden snail" or "common brown garden snail" are rather meaningless since they refer to so many types of snails, but they sometimes mean H. aspersa. Helix aspersa is also known as the French "petit gris," "small grey snail," the "escargot chagrine," or "la zigrinata." The shell of a mature adult has four to five whorls and measures 30 to 45 mm across. It is native to the shores of the Mediterranean and up the coast of Spain and France.

It is found on many British Isles, where the Romans introduced it in the 1st century AD (Some references say it dates to the Early Bronze Age.) In the early 19th century the French brought it into California, where it has become a serious pest. These snails are now common throughout the U.S. It was introduced into several Eastern and Gulf states even before 1850 and, later introduced into other countries such as Australia, South Africa, New Zealand, Mexico, and Argentina. H. aspersa has a life span of 2 to 5 years. This species is more adaptable to different climates and conditions than many snails, and is found in woods, fields, sand dunes, and gardens.

  Cepaea Nemoralis Cepaea nemoralis, the "grove snail," or the Spanish "vaqueta", measures about 25 mm across the shell. It inhabits Central Europe and was introduced into, and is now naturalized in many U.S. states, from Massachusetts to California, and from Tennessee to Canada. Its habitat ranges widely from woods to dunes. It mainly eats dead plant material, but it likes nettles and buttercups and will eat dead worms and dead snails. Cepaea hortensis, the "white-lipped snail", measures about 20 mm across the shell which often has distinct dark stripes. It is native to central and northern Europe. This species was introduced into Maine, Massachusetts, and New Hampshire in colonial times, but it never became established in these states.

 Its habitat varies but C.hortensis is found in colder and wetter places than C.nemoralis. Their smaller size and some people's opinion that they do not taste as good make C. hortensis and C.nemoralis less popular than the larger European land snails. Helix lucorum, sometimes called "escargo turc," measures about 45 mm across the shell. It is found in central Italy and from Yugoslavia through the Crimea to Turkey and around the Black Sea. Helix adanensis comes from around Turkey. Helix aperta measures about 25 mm. Its meat is highly prized.

 It is native to France, Italy, and other Mediterranean countries and has become established in California and Louisiana. Sometimes known as the "burrowing snail," it is found above ground only during rainy weather. In hot, dry weather, it burrows three to six inches into the ground and becomes dormant until rain softens the soil. Theba pisana, also called the "banded snail"or the "cargol avellanenc", measures about 20 mm and lives on dry, exposed sites, usually near the sea. Native to Sicily, it has been spread to several European countries, including England.

This snail is a serious garden pest and is the "white snail" that California once eradicated by using flamethrowers to burn off whole areas. In large numbers, up to 3,000 snails per tree, it can ravage a garden in 24 hours and a citrus or other crop in a couple of nigh

  Achatina fulica Achatina fulica and other Achatina species, giant African snails. They can grow up to 326 mm (1 ft ¾ in) in length. Their native range is south of the Sahara in East Africa. This snail was purposely introduced into India in 1847. There was an unsuccessful attempt to establish it in Japan in 1925. It has been purposely and accidentally transported to other Pacific locations and was inadvertently released in California after World War II, in Hawaii, and later in North Miami Florida in the 1970s.

 In many places, it is a serious agricultural pest that causes considerable crop damage. Also, due to its large size, its slime and fecal material create a nuisance as does the odor that occurs when something like poison bait causes large numbers to die. The U.S. has made considerable effort to eradicate Achatina. The U.S. Department of Agriculture (USDA) has banned the importation and possession of live Giant African snails. However, they are still sought after as pets due to the vibrant "tiger stripes" on their shells.

  Mating and Egg Laying
Snails are hermaphrodites. Although they have both male and female reproductive organs, they must mate with another snail of the same species before they lay eggs. Some snails may act as males one season and as females the next. Other snails play both roles at once and fertilize each other simultaneously. When the snail is large enough and mature enough, which may take several years, mating occurs in the late spring or early summer after several hours of courtship. Sometimes there is a second mating in summer. (In tropical climates, mating may occur several times a year. In some climates, snails mate around October and may mate a second time 2 weeks later.)

After mating, the snail can store sperm received for up to a year, but it usually lays eggs within a few weeks. Snails are sometimes uninterested in mating with another snail of the same species that originated from a considerable distance away. For example, a H. aspersa from southern France may reject a H. aspersa from northern France. Helix Pomatia Snails need soil at least 2 inches deep in which to lay their eggs. For H. pomatia, the soil should be at least 3 inches deep to keep out pests such as ants, earwigs, millipedes, etc.

 Dry soil is not suitable for the preparation of a nest, nor is soil that is too heavy. In clay soil that becomes hard, reproduction rates may decrease because the snails are unable to bury their eggs and the hatchlings have difficulty emerging from the nest. Hatchability of eggs depends on soil temperature, soil humidity, soil composition, etc. Soil consisting of 20% to 40% organic material is good. The soil should be kept at 41 to 50 °F (5 to 10 °C), and is best around 70 °F (21 °C). Soil moisture should be maintained at 80%.

 One researcher removes eggs immediately after they are deposited, counts them, then keeps them on moist cotton until the eggs hatch and the young start to eat. Snails lose substantial weight by laying eggs. Some do not recover. About one-third of the snails will die after the breeding season. H. pomatia eggs measure about 3 mm in diameter and have a calcareous shell and a high yolk content. H. pomatia lays the eggs in July or August, 2 to 8 weeks after mating, in holes dug out in the ground. (Data varies widely on how long after mating snails lay eggs.) The snail puts its head into the hole or may crawl in until only the top of the shell is visible; then it deposits eggs from the genital opening just behind the head. It takes the snail 1 to 2 days to lay 30 to 50 eggs. Occasionally, the snail will lay about a dozen more a few weeks later.

The snail covers the hole with a mixture of the slime it excretes and dirt. This slime, which the snail excretes to help it crawl and to help preserve the moisture in its soft body, is glycoprotein similar to eggwhite. Fully developed baby H. pomatia snails hatch about 3 to 4 weeks after the eggs are laid, depending on temperature and humidity. Birds, insects, mice, toads and other predators take a heavy toll on the young snails. The snails eat and grow until the weather turns cold. They then dig a deep hole, sometimes as deep as 1-foot (30 cm), and seal themselves inside their shell and hibernate for the winter.

This is a response to both decreasing temperature and shorter hours of daylight. When the ground warms up in spring, the snail emerges and goes on a binge of replacing lost moisture and eating. Helix aspersa H. aspersa eggs are white, spherical, about 3 mm in diameter and are laid 5 days to 3 weeks after mating. (Data varies widely due to differences in climate and regional variations in the snails' habitats.) H. aspersa lays an average of 85 eggs in a nest that is 1 to 1½ inches deep. Data varies from 30 to over 120 eggs, but high figures may be from when more than one snail lays eggs in the same next. Growth Within the same snail population and under the same conditions, some snails will grow faster than others.

Some will take twice as long to mature.However, a snail farmer should obviously select and keep the largest and fastest maturing snails for breeding stock and sell the smaller snails. By selecting only the largest, the average size of the snail may increase significantly in only a couple of generations. Most of the differences in growth are probably due to environmental factors including stocking density. However, to whatever extent these differences are genetic, farmers generally breed large, fast-growing snails instead of small, slower-growing ones. Several factors can greatly influence the growth of snails,these are: population density, stress (snails are sensitive to noise, light, vibration, unsanitary conditions, irregular feedings,touch,etc.), feed, temperature and moisture, and the breeding technology used. H. aspersa requires at least 3% to 4% calcium in the soil (or another source of calcium) for good growth. Most snails need more calcium in the soil than H. aspersa. Low calcium intake will slow the growth rate and cause the shell to be thinner.

Calcium may be set out in a feeding dish or trough so the snails can eat it at will. Food is only one calcium source. Snails may eat paint or attack walls of buildings seeking calcium, and they also will eat dirt. A newborn's shell size depends on the egg size since the shell develops from the egg's surface membrane. As the snail grows, the shell is added onto in increments. Eventually the shell will develop a flare or reinforcing lip at its opening. This shows that the snail is now mature; there will be no further shell growth.

Growth is measured by shell size, since a snail's body weight varies and fluctuates, even in 100% humidity. The growth rate varies considerably between individuals in each population group. Adult size, which is related to the growth rate, also varies, thus the fastest growers are usually the largest snails. Eggs from larger, healthier snails also tend to grow faster and thus larger. Dryness inhibits growth and even stops activity. When it becomes too hot and dry,the snail becomes inactive, seals its shell and estivates (becomes dormant) until cooler, moister weather returns. Some snails estivate in groups on tree trunks, posts, or walls. They seal themselves to the surface, thus sealing up the shell opening. Peak snail activity (including feeding and thus growth) occurs a few hours after sunset, when the temperature is lower and the water content (in the form of dew) is higher.

During daytime snails usually seek shelter. Farming snails Successful snail culture requires the correct equipment and supplies, including: snail pens or enclosures; devices for measuring humidity (hygrometer), temperature (thermometer), soil moisture, and light (in foot candles); a weight scale and an instrument to measure snail size; a kit for testing soil contents; and a magnifying glass to see the eggs. Equipment to control the climate (temperature and humidity), to regulate water (e.g., a sprinkler system to keep the snails moist and a drainage system), to provide light and shade, and to kill or keep out pests and predators may also be needed. Some horticultural systems such as artificial lighting systems and water sprinklers may be adapted for snail culture. Better results are obtained if snails of the same kind and generation are used. Some recommend putting the hatchlings in another pen.

Four Systems Of Snail Farms Can Be Adopted:

Outdoor pens.
In- buildings with a controlled climate.
In- closed systems such as plastic tunnel houses or "greenhouses".
Snails may breed and hatch inside in a controlled environment and then (after 6 to 8 weeks) may be placed in outside pens to mature.

Favorable Conditions
Climate: A mild climate 15–25 °C (59–77 °F) with high humidity (75% to 95%) is best for snail farming, though most varieties can stand a wider range of temperatures. The optimal temperature is 21 °C (70 °F) for many varieties. When the temperature falls below 7 °C (45 °F), snails hibernate. Under 12 °C (54 °F) the snails are inactive, and under 10 °C (50 °F), all growth stops. When the temperature rises much above 27 °C (81 °F) or conditions become too dry, snails estivate. Wind is bad for snails because it speeds up moisture loss, and snails must retain moisture.

Moisture: Snails thrive in damp but not waterlogged environments and thus a well-draining soil is required. Research indicates that water content around 80% of the carrying capacity of the soil and air humidity over 80% (during darkness) are the most favorable conditions. Many farmers use mist-producing devices to maintain proper moisture in the air and/or soil. Also, if the system contains alive vegetation, the leaves are to be periodically wet.

Soil: Snails dig in soil and ingest it. Good soil favors snail growth and provides some of their nutrition. Lack of access to good soil may cause fragile shells even when the snails have well-balanced feed; the snails growth may lag far behind the growth of other snails on good soil. Snails will often eat feed, then go eat dirt. Sometimes, they will eat only one or the other.
A well-functional soil would have the following characteristics:Must contain neither a lot of sand nor too much clay, as snails strive to dig into hard clay and sand dries out easily,20–40% organic matter content. Organic matter enhances cation exchange capacity of calcium and magnesium which in turn stimulates growth.
pH: around 7.
Also,adequate calcium, the primary constituent of shells (up to 98%) is essential. A common way to introduce calcium is to add ground limestone at a suggested concentration of 4.5 kg per 100 square feet (9.3 m2). Calcium may also be set out in a feeding dish or trough so the snails can eat it at will. More advanced techniques involve the addition of polyacrylamide with the following concentration: 12.5 cm³ of a 160 g M.A./one preparation in 250 cc of water per kilogram of dry soil. Such stabilization treatment helps the soil structure resist washing and allows regular cleaning without destroying the crumb structure of the soil that is beneficial for egg laying.
Soil Care: A farmer must find a way to prevent the soil from becoming fouled with mucus and droppings and also tackle undesirable chemical changes that may occur in time.

Soil Mix Suggestions:
Peat, clay, compost and CaCO3 (Calcium trioxo carbonate iv/Limestone)
Leaf mold (at pH 7)